

Page 1

Z2 Computer Solutions
Wayne L. Atchison
1609 Lund Lane
Polson, MT 59860
www.z2cs.com

The Snippet Engine
Personal Comments and History

November 13, 2015
Edited November 29, 2018

During the years 1985 through 1992 the C++ compiler, and the C++ Object Oriented Design
(OOD) concepts, began to capture the computer software industry. It was during this time I
realized that this popular movement would ultimately take software development into the wrong
direction. I understood back then that the foundational concepts behind OOD were wrong.
Making this assertion may sound like “blasphemy”, but it has been proven correct many times.

It is not that the concept of using class-objects is a wrong direction. I use C++ classes all of the
time. Rather, it is the fundamental fact that the C++ class-object, and the OOD methodology,
inherently limits the software design in a number of very significant ways. There are many
limitations imposed, but the two primary limitations are:

1.) The C++ class-object cannot automatically take advantage of multiple CPU-Core
Threads. The OOD methodology assumes that each designed-class-object method is
executed as a single block of code, compiled together along with all other class-objects.
Many “tricks” must be used to force the class-objects to execute using more than one
Core-Thread.

2.) The C++ class-object cannot include external objects. Other objects running

externally, on networked computers, cannot be included as subparts of itself. All class-
objects must be compiled as a single unit, forming a single localized Executable file.
Thus, all class-objects must be linked together, with all other objects it needs, so that they
can “Call” methods into execution. The concept of a class-object including external
objects as part of itself, to be “Asserted” into execution, is nonexistent. Many “tricks”
must be used to allow class-objects needing data from external sources to execute.

Even as the new OOD methodology was just emerging in project designs, it was clear to me that
this popular movement would ultimately mean that future software development would become
overly complicated, and very expensive. Today, I no longer need to defend this vision, as the
number of failed large multi-million dollar OOD projects are too numerous to even count.
Search for “IT project failure examples”:
 http://it-cortex.com/Examples_f.htm
 http://calleam.com/WTPF/?tag=examples-of-failed-it-project

Page 2

An enhancement to the OOD Methodology:

Seeing these significant short falls, I set about to create a way to enhance the C++ class object
and the OOD methodology. The result is the creation of a new “Engine” to process these new
enhanced Objects. This new engine is the Snippet Engine, and the enhanced Objects are the
Snippet Engine “Nodes”.

The foundational concept behind the Snippet Engine technology, is to use these new kind of
Objects (Nodes) to network together, to do anything. Each Snippet Engine Object can talk to,
and aggregate (build one accomplishment on top of another) with any other Objects running
anywhere in the world.

Simplistically, the Snippet Engine is designed specifically for modern networked computers,
each having multiple CPU-Cores. The Snippet Engine Object-Node automatically takes full
advantage of massive parallel processing though the multiple CPU-Cores, and allows both local
and externally executed Objects to be included as designed subsets in performing its overall task.
Thus, the two most significant limitations of the C++ class-object are overcome.

The result of removing these two limitations is astronomical !
Snippet Engine Objects (Nodes) are always executed as the lowest-level execution units of a
computer, as CPU-Threads. Executing as a Thread, each Snippet Engine Object automatically
takes advantage of processing behind a solid system-lock, which means their data is always
isolated for concurrency, and they cannot be interrupted until they are done. This means far less
overhead in synchronizing “Command and Control” and database changes.

Snippet Engine Objects operate both asynchronously and autonomously. Each Node behaves as
a self-scheduling, self-aware, command-driven “Knowledge Center”.

Each Snippet Engine Object-Node “knows how to do something”, and uses other Objects, as
subsets of itself, to ensure that it is always in a state of being “done”. The Snippet Engine
Application performs by having all Object “Knowledge Centers” perform and aggregate their
results together.

Essentially, Snippet Engine Objects (Nodes) have no scope limitations, and each may be
designed to do “anything”, large or small, as each may interact directly with any number of other
Objects, running anywhere in the world, to perform their designed duties. Each Object is
“always alive”, and can be thinking ahead in anticipation with the other Objects on the other
networked computers.

Each Snippet Engine Object can be thought of as a “Cyber Ant”. The Snippet Engine Network
can create thousands of “Cyber Ants”, each working autonomously, each doing what it does, and
each telling the others, around the world, of what it has accomplished.

Page 3

No other software technology enables the developers to create high
level Object Oriented Constructs, where each Object is capable of
worldwide, cooperative, self-aware interaction, and infinite
aggregation of intelligence.

There are no limits to what can be accomplished when aggregating Snippet
Engine Objects, as “Cyber Ants”.

